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I Introduction

I.1 The high-dimension variable selection problem

Model selection and parsimony amongst explanatory variables are traditional scientific problems that

date back at least to the fourteenth century and Occam’s razor (Pluralitas non est ponenda sine neces-

sitate). They have a particular echo in modern Statistics and have received growing attention over the

past decade, following two factors: on one hand the growing computational power we can harness, on

the other high-dimensional datasets have become increasingly available to statisticians in various fields.

Consequently, the statistician is more frequently than ever faced with a dataset that contains a very large

number of explanatory variables that he has to chose from.

Let us first clarify the problem in the framework of the Gaussian homoscedastic linear model:

y = Xβ + ε (1)

y is n-dimensional vector of the outcome of interest, X the n×p design matrix and β the p-dimensional

vector of coefficients. Let Xi the i-th row of the design matrix. We assume that each copy (yi, Xi) of

elements from y and X is i.i.d. and that ε, the error term is a Gaussian vector, uncorrelated with X, of

mean zero and diagonal variance-covariance matrix with diagonal elements all equal to σ2.

The high-dimensional case arises when n < p, in which case the OLS estimator cannot be computed.

For the applied statistician, this problem may arise even if we have p ≤ n but p relatively large compared

to n because XTX may be close to singular. We notice that it encompasses two situations: i) when

the dataset possess a large number of raw variables to select from, ii) when instead of assuming a linear

regression function, one wants to consider a non-parametric regression function and approximate it using

sieve estimation by expending it in a convenient basis.

This high-dimensional curse occurs in a large number of scientific realms:

♦ A classical example in genomics is the detection of genes responsible for obesity, in which case n the

number of patients can be a few hundreds as DNA microarrays are costly, while we may consider

p = 300, 000 genes.

♦ In policy evaluation, variable selection mistakes may prevent identification of the causal effect of a

treatment when using the Conditional Independence Assumption (CIA) (Imbens and Wooldridge,

2008; Givord, 2010). This assumption amounts to say that conditionalonto a set of well-identified

observables, the outcome of the treatment is independent of taking or not the treatment. Con-

sidering a large number of variables and a flexible functional form strengthens the robustness of

the results. Several authors have documented the problem and proposed Lasso-type estimators to

select covariates, for example: Belloni et al. (2012, 2013); Farrell (2013)

♦ In economics, when one wants to consider a large number of regressors but assume that only a few of

them are actually significantly related to the outcome, as a way to have an agnostic look at the data.

It is often the role of economic theory to justify the use of a regressor, but the researcher may want

to try all the available variables rather than relying on prior beliefs given by the economic theory

(see for example Sala-i Martin (1997) in the context of finding growth determinants). Considering a

high-dimensional X is a way to take a step back and recover the sparsity pattern instead of simply

assuming it.

The high-dimensional literature is concerned with two main tasks which objectives are somewhat

contradictory. The first one is prediction: how to best extract information from the variables contained

in the design matrix to predict the outcome ? The second one is estimation: how to accurately estimate

a model’s parameters in a way which facilitate interpretability and hereby the understanding of a phe-

nomenon ? The first task often requires the use of methods that are well-understood in their functioning
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but that look like a black box when one tries to explain it to a non-statistician (e.g. model averaging,

SVM). The second task calls for a simple model precisely because we want to gather a few features that

our brain will be able to retain in order to get a better understanding of a problem.

I.2 Sparisty and penalization as a way to overcome the curse of dimension-

ality

A convenient way to deal with high-dimensional models is to assume the sparsity in β, i.e. only

s << n elements of β are non-zero. We call sparsity pattern the set of non-zero components of β:

J (β) := {j : βj 6= 0}. In the detection of the obesity genes problem, it means that we expect only two or

three genes to be responsible for obesity and all others to have an insignificant impact (i.e. to be outside

the sparsity pattern). Consequently, we want to penalize models that are not parsimonious in their use

of the variables.

The traditional, combinatorial, way of selecting such a model would be to estimate all the possible

models that include only a given number of variables s (s = 1, ...,min(n, p)) by OLS and take the one

that gives the best fit (denoted by M?
s ). Then compare models M?

1 , ...,M
?
min(n,p) using a criterion that

penalizes the number of variables included in the model such as the BIC of Schwarz (1978). However, in

the obesity genes example, this would requires to estimate 2min(n,p) models by least squares, which isn’t

technically feasible. This technical limitation comes from the fact that non-zero elements are penalized by

mean of the `0-norm which isn’t convex. Fairly recently, a lot of attention has been devoted to estimators

that penalize non-zero elements of β in a way that makes computation easier, namely with a convex

function. The most famous of these estimators is the Lasso of Tibshirani (1996) that uses the closest

convex function - the `1-norm. The Lasso is defined as the result of the following minimization program:

min
β

n−1
n∑
i=1

(
yi − xTi β

)2
+ λ||β||`1 (2)

When λ = 0, we obtain the OLS, while β is null when λ = +∞. Properties of the Lasso and optimal

choice for the penalty level λ have been studied in Bickel et al. (2009); Meinshausen and Yu (2009);

Lounici (2008); Belloni and Chernozhukov (2010); Zhao and Yu (2006); Zhang and Huang (2008). How-

ever, these penalty functions are far from the only available choices and it is easy to be lost.

According to Fan and Li (2001), a good penalty should display the following three properties that

translate into mathematical properties of the penalty functions:

♦ sparsity : unimportant coefficients should be set to zero so as to operate variable selection.

♦ unbiasedness: large coefficients should not be shrunk unnecessarily to zero so as to avoid biasing

the estimation.

♦ continuity in data: small perturbation in data should be discounted so as to have a robust estimation

and a stable prediction.

It is to be noted that no simple penalty function fulfills all these conditions simultaneously.

I.3 From frequentist penalization to Bayesian prior

So far, our implicit framework was frequentist. But we can also cast the problem in a Bayesian

framework. Recall that the posterior distribution of a parameter of interest is proportional to the product

of the likelihood and the prior:

π(β|y,X) ∝ π(β)× L(y,X;β) (3)

When one considers this equation in log, it can easily be seen that maximizing the posterior distribu-

tion (to obtain what is called the MAP) is equivalent to perform a penalized likelihood estimation where
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the prior plays the role of the penalty term. Prior distributions that induce sparsity are to be centered

around zero. The lower the variance of the prior distribution, the higher the number of coefficients to

be set to zero. As an example, the Lasso estimator can be recovered as a MAP with a Laplace prior

distribution. The regularization parameter λ corresponds to the inverse of the prior variance.

A popular prior is the spike-and-slab distribution which is a mixture between a Dirac mass at zero

and a Gaussian distribution. The first component drives the coefficients to be exactly zero, while the

other allows for nonzero entries. The mixing proportion between the two distributions plays the same role

as the regularization parameter. However, the mass at zero poses significant computational difficulties.

Several solutions propose replacing the Dirac mass by a Normal distribution centered at zero with a very

small but positive variance, such as the Stochastic Search Variable Selection (SSVS) prior of George and

McCulloch (1993).

Bayesian methods to handle high-dimensional problems are very popular for prediction in economics

and finance. In macroeconomics in particular, Bayesian methods that favor a parsimonious model have

given great results since the first works of Litterman (1986) and Bayesian hierarchical models are now

one of the main tools for prediction in several Central Banks. The most popular papers regarding the

subject are: Giannone et al. (2010); De Mol et al. (2008); Giannone et al. (2012). However, for example in

Giannone et al. (2012) as it is a hierarchical model that requires to run a Metropolis-Hastings algorithm,

computation of the posterior distribution takes a long time which is a burden when one wants to explore

different specifications and different datasets. The work of Ročková and George (2014) is very interesting

in this respect as it is computationally very fast while not giving away the complexity of the model.

In Section II we expose the main features of their EMVS approach. In Section III we apply it to real

data and compare it with other popular penalized estimators.

II EMVS presentation

The EMVS (Expectation - Maximisation applied to Variable Selection) algorithm proposed in Ročková

and George (2014) is based on a deterministic approach; its main purpose is to lower the computational

burden of Markov-Chain Monte Carlo methods when estimating posterior distributions over subsets of

potential predictors. This algorithm is thus particularly appropriate in high-dimensional settings with

n < p.

The EMVS is based on the continuous spike-and-slab normal mixture model and on a closed form

expression of the EM algorithm. Variable selection is achieved through two important assumptions on

the spike distribution, namely continuity and a positive variance parameter that introduces sparsity in

the selection process. Once posterior modes have been discovered, model evaluation is carried out in

a second step using a point mass spike distribution. In the following subsections we present (1) the

conjugate spike-and-slab formulation, (2) the closed form EM algorithm, and (3) the resulting variable

selection procedure. Finally, we briefly introduce extensions suggested by the authors.

II.1 Conjugate Spike-and-Slab formulation

Suppose we have a set of p potential predictors stacked in a (n× p) matrix X = (x1, . . . , xp). We put

no restriction on p and n and allow for p > n. We want to select the best model to predict the (n × 1)

response vector y under the Gaussian Linear model assumption:

y|α, β, σ ∼ N
(
α+Xβ, σ2In

)
(4)

For that purpose, define a vector of latent variables γ = (γ1 . . . , γp)
′

such that

γi = 1
{
βi 6= 0

}
∀i ∈ {1, . . . , p} (5)
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i.e. γi = 1 indicates that variable xi should be included in the model.

The EMVS approach is based on a Bayesian hierarchical approach and takes part of prior distribu-

tions on the model parameters α, β, σ to estimate the posterior distribution of interest, π(γi|y). This

distribution is particularly interesting when performing variable selection because it gives the posterior

probability that the variable xi is relevant in the model. For a sufficiently low posterior probability of the

event {γi = 1}, regressor xi will be discarded. We now describe the hierarchical structure of the model.

Prior on β. The general set-up underlying the EMVS algorithm is the ”Spike-and-Slab” Gaussian

mixture prior on β presented in George and McCulloch (1997). This specification is the stepping stone

of Bayesian variable selection methods. The prior distribution of β is set to be Gaussian and centered

with a mixture component arising from the covariance matrix:

π(β|σ, γ, v0, v1) = Np(0, Dσ,γ) (6)

where 0 ≤ v0 < v1 are hyperparameters such that:

Dσ,γ = σ2


(1− γ1)v0 + γ1v1 0

. . .

0 (1− γp)v0 + γpv1

 (7)

Looking at the structure of this covariance matrix we see that depending on the value of γi, βi will have

a variance parameter given either by v0 or v1. More precisely:

V
(
βi
)

= v0 if γi = 0 (8)

V
(
βi
)

= v1 if γi = 1 (9)

In a nutshell, v0 is the variance parameter of the spike distribution and is set to a small value, while

v1 is the variance parameter of the slab distribution and is set to a large value. In a the traditional

spike-and-slab formulation, v0 would be set to zero so as to have a Dirac mass at zero. However, it

entails too much computational problems and keeping a slightly positive value for v0 constraints very

small coefficients to be in the spike part of the mixture without exactly being zero. Nevertheless, the γi

will play the role of selectors in the sense that the probability for βi to be in the spike part of the mixture

is a signal that βi should be exactly zero. The advantage of having such a specification is that we rae in

a presence of a conjugate prior for β which allows a closed form and consequently does not require to use

a Gibbs sampler.

Prior on α. Ročková and George (2014) suggests to remove the constant term by working on the

centered outcome y and design matrix X.

Prior on σ2. The prior distribution on the scaling parameter is supposed to be an inverse-gamma:

π(σ2|γ) = IG(v/2, vλ/2) (10)

with v = 1 and λ = 1.

Prior on γ. The parameter γ takes 2p possible values, just as when penalizing with an `0-norm as

we have seen in the introduction; its distribution is specified with respect to an hyperparameter θ with

a specification of the form

π(γ) = E
[
π(γ|θ)

]
=

∫
π(γ|θ)π(θ)dθ (11)

If there is no a priori information on which regressor should be or shouldn’t be included in the model

(i.e. we don’t have structural information on γ), a non informative choice is the i.i.d. Bernoulli prior

π(γ|θ) = θ
∑n

i=1 γi(1− θ)p−
∑n

i=1 γi (12)

This specification means that each variable has a probability θ to be included in the model.

Prior on θ. To complete the hierarchical structure parameter θ is assigned a beta distribution

π(θ) ∝ θa−1(1− θ)b−1 (13)

where a and b are positive reals arbitrarily determined.
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II.2 Closed form EM algorithm

The estimation of the posterior distribution π(γ|y) is not straightforward. Using the previous spike-

and-slab formulation, Ročková and George (2014) propose a version of the EM algorithm where closed

form solutions exist for the parameters β, σ, θ in the Maximisation step of the algorithm. The resulting

method is less computationally intensive than the standard MC-MC stochastic search approach.

The EM algorithm maximises the posterior distribution of the parameters π(β, σ, θ) indirectly through

an iterative process based on the objective function:

Q(β, σ, θ|β(k), σ(k), θ(k)) = E
[
log π(β, σ, θ, γ|y)

∣∣β(k), σ(k), θ(k), γ(k)
]

(14)

where π(β, σ, θ, γ|y) is the complete posterior distribution, which is unobserved since γ is latent. The

algorithm iters the following two steps:

(1) (E step) The first step corresponds to the evaluation of the conditional expectation

Q(β, σ, θ|β(k), σ(k), θ(k)) (15)

(2) (M step) The second step corresponds to a maximisation:(
β(k+1), σ(k+1), θ(k+1)

)
= arg max

β,σ,θ
Q(β, σ, θ|β(k), σ(k), θ(k)) (16)

The EM algorithm generates a sequence of parameter estimates which converges monotonically to-

wards a local maximum of the objective posterior π(β, σ, θ). In the context of the spike-and-slab hierar-

chical structure Ročková and George (2014) show that the objective function Q has interesting properties

that might significantly ease the computational burden of the algorithm. Their results are based on the

following decomposition of the conditional expectation (14):

Q(β, σ, θ|β(k), σ(k), θ(k)) = C +Q1

(
β, σ

∣∣β(k), σ(k), θ(k)
)

+Q2

(
θ
∣∣β(k), σ(k), θ(k)

)
A first simplification comes from the fact that the hierarchical posterior distribution of γ|β(k), σ(k), θ(k), y

depends on y only through the current estimates β(k), σ(k), θ(k). The hierarchical assumptions produce

a simple closed formula to evaluate Q1. Consequently, the E-step simply consists in the evaluation of

this closed expression with no additional algorithm involved. A second simplification comes from the

separability of Q: in the M-step, it is possible to maximise Q1 and Q2 separately. Analytical solutions

for the values of the parameters β, σ, θ that maximise the objective function Q are given in the following

paragraphs. Once again, their existence provides substantial computationnal savings.

We will not go into each details of the EM-algorithm, but we think it is important to comment on

some of the features in the Maximization step that make the EMVS particularly interesting and see how

it selects variables.

Iteration for β At each step, the next value of β is computed as a solution of a generalized Ridge

problem:

β(k+1) = (XTX +D?)−1XT y (17)

We can see that D? is the penalty term of the Ridge regression. It is a p × p diagonal matrix with

entries d?i as the individual penalty of the coefficient βi. We focus on the form of this penalty for a

moment.

d?i =
1− p?i
v0

+
p?i
v1

(18)

p?i is the probability of being included in the model at each step. 1
v0

is large so when p?i is close

to zero, the penalty applied to coefficient βi is large, and it will be shrunk towards zero. This penalty
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combines the data extracted in p?i and prior beliefs regarding the width of each component of the mixture

in v0, v1. This closed form would not have been possible in the usual spike-and-slab as v0 = 0 in this

case. Moreover, it means that β(k+1) is defined even if p >> n as the matrix inversion problem has been

regularized.

Iteration for σ This iteration does not give a particular insight on the way the EMVS performs variable

selection.

Iteration for θ At each, the parameter of the Bernoulli prior that a given variable is included in the

model is given by:

θ(k+1) =
a− 1

∑p
i=1 p

?
i

a+ b+ p− 2
(19)

This is again a combination between prior beliefs and the data.

II.3 The variable selection procedure and spike-and-slab regularization plot

The EMVS helps selecting a sparsity pattern in a specific way, still keeping the idea of using the

MAP. Two features are particularly appealing. The first one is that the variable selection procedures

operates by thresholding. The second one is the computational simplicity that allows to investigate

several configuration of prior distribution.

Thresholding rule The posterior submodel γ̂ is selected using the following rule:

γ̂ = arg max
γ

P(γ|β̂, θ̂, σ̂) (20)

Since the posterior is i.i.d., the problem is separable and we obtain the following rule:

γ̂i = 1⇔ P(γi = 1|β̂, θ̂, σ̂) ≥ 0.5 (21)

Since P(γi = 1|β̂, θ̂, σ̂) is an increasing function of |β̂|, equation (21) is equivalent to perform thresh-

olding in the following way:

γ̂i = 1⇔ |β̂| ≥ σ̂
√

2v0 log(ωic)c2/(c2 − 1) (22)

where c2 = v1/v0 and ωi = (1− P(γi = 1|σ̂))/P(γi = 1|σ̂). We can note that the larger the estimated

noise level σ̂, the more coefficients will be set to zero.

Regularization plot Since the EMVS is computationally very fast, a nice property is that it is possible

to compute the MAP of the coefficients for several values of v0, which plays the role of a regularization

parameter as we have seen in equation (18). Consequently, a ”spike-and-slab” regularization plot that

works in the same way as the Lasso regularization plot in Hastie et al. (2009, p. 65) helps the applied

statistician to visualize the results and select the relevant features of the design matrix. As v0 increases,

the negligible coefficients are more and more absorbed in the spike part of the mixture. Contrary to

shrinkage estimators such as the Lasso or the Ridge, as v0 increases, the EMVS does not shrink the

large coefficients to zero too much when negligible coefficients are getting closer to zero. This feature is

appealing in the sense of the unbiasedness property that we have mentioned in the introduction. Section

III displays examples of such plots.

Post-Estimation model selection Once the statistician has run the EMVS for many values of the

regularization parameter (v10 , . . . , v
K
0 ), he his facing a set of possible solutions (γ̂1, . . . , γ̂K) and has to

choose one among them. The selection criteria proposed by the authors is based on the maximization

of the marginal probability of γ under the prior v0 = 0, denoted π0(γ|y). This criteria is particularly

interesting since it gives the probability, once we have observed the outcome y, that the accurate model is
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indeed γ̂. This probability integrates and summarizes all the information introduced by the hierarchical

spike-and-slab structure. Furthermore it allows to evaluate each model by selecting only the variables

for which γi = 1. In the spike-and-slab context π0(γ|y) is known up to a normalizing constant C, i.e. a

closed form solution allows to compute a function

g(γ) = Cπ0(γ|y) (23)

That will then be evaluated at (γ̂1, . . . , γ̂K). This function is the one referred to in the graphic outputs

for instance in figure 1.

II.4 Extensions

We have presented the workhorse EMVS model. Ročková (2013, Chapter 3) presents several extensions

and problems that we briefly mention.

Multimodality As it is common with EM algorithms, getting stuck in a local optimum is a risk.

However, as it is computationally very fast, it is possible to overcome that drawback with the EMVS.

The author proposes using deterministic annealing as a way to flatten the objective function and facilitate

the jump between local modes.

Heavy tail slab distribution The current slab distribution is Normal which is a thin tail distribution.

However, this choice has the drawback that large coefficients may be shrunk towards zero too much. To

overcome this phenomenon, it is proposed to replace the Normal slab distribution by a fat tail distribution

that does not bias large coefficients.

Structured Prior Information Forms for π(γ|θ) This part of the paper considers other priors for

the inclusion dummy. Instead of assuming that the inclusion of a variable in the model is independent

from the inclusion of the others, the author considers different priors where groups have variables are

likely to be relevant together.

Stochastic Dual Coordinate Ascent for EMVS Finally, this part is concerned with reducing the

computational burden of the Ridge solution for β in the Maximization step, especially when p > n.
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III Applications and comparison with other selectors

In this part, we use the C++ / R code kindly given by Veronika Ročková.

III.1 An application to violent crime data in the US

We use the EMVS to analyze the Violent Crime dataset3. This dataset gathers information regarding

socio-demographic, crime and police force features of American cities. Once cleaned of missing cases, this

dataset contains 1994 instances of 100 attributes. We try to see which factors influence the violent crime

rate, defined as the number of crime per 1000 inhabitants, of US cities using the EMVS.

We run the EMVS for several values of v0 (from 0.01 to 0.12). We use a Beta-binomial prior on the

probability of inclusion, setting a = b = 1 and we set v1 = 1000. This computation for twelve values of

v0 took no more than 3 seconds (guesstimate) on our personal computers. We plot the results in Figure

1:

Figure 1: Results from the EMVS on the crime dataset
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Note: The left-hand panel shows the regularization plot as a function of v0. The blue dots are variables that are in the slab part

of the distribution. The red dots are the variables that are in the spike part of the distribution so considered as irrelevent. The

right-hand panel shows the log of the g function which is a measure of the quality of the model.

The best model found attains a log(g) value of -3721.08 as can be infered from the plot. It is obtained

for v0 = 0.07 and selects 9 variables. Amongst them: the percentage of population that is african ameri-

can, the percentage of males who are divorced, the percentage of kids with two parents, the percentage of

kids born to never married, the percentage of persons in dense housing (more than 1 person per room),

the number of vacant houses, the number of rental housing that are in the lower quartile, the median

gross rent and the number of homeless people counted in the streets. We can clearly see that underlying

these variables are the economic and social status of the living population. Indeed, the black population

is amongst the poorest and the least educated in the US. Kids in the least stable families are also more

prone to crime. Finally, housing factors plays a big role in the prediction of the crime rate: they are of

course supported by economic factors, but we cannot pronounce ourselves on the causality link between

the two in the sense that people may also shy away from these location precisely because of the crime rate.

A nice feature of the EMVS is the possibility of computing the probability of inclusion for each

variable. For the best model found, the EMVS discriminates very well in the sense that no probability is

3Source: https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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“in the middle” (i.e. close to 0.5): they are either very small or very large. The median of the inclusion

probability is .009, the third quartile is 0.001 and the maximum is 1. The bottom line is that regarding

variable selection, the EMVS gives a clear-cut answer.

III.2 Comparison with the Lasso

We now run a Lasso on the same dataset to see how it differs from the EMVS. The Lasso penalty

level is arbitrarily set; we take it so that the procedure selects the same number of variables as EMVS.

The two procedure share 6 covariates over 9. Our results are presented in Table 1.

Table 1: EMVS vs Lasso results

EMVS OLS (EMVS selected) Lasso Post-Lasso

Nb. vacant households 0.1742 0.1785 0.1333 0.1414

Pctg of divorced males 0.1759 0.1751 0.0772 0.1409

Median gross rent 0.2982 0.2810

Number of homeless persons in the streets 0.1880 0.1519 0.0772 0.1569

Pctg of kids born to never married 0.1882 0.1616 0.1948 0.1952

Pctg Kids with two parents -0.2365 -0.2940 -0.3010 -0.3025

Pctg persons in dense housing 0.1912 0.2358 0.0476 0.1024

Pctg people living in urban areas 0.0010 0.0382

Pctg vacant housing that is boarded up 0.0043 0.0434

Pctg Black 0.1922 0.1719

Pctg White -0.1771 -0.1730

Rental housing - lower quartile rent -0.2528 -0.2080

Two of the three regressors selected only by the Lasso (the percentage of people living in urban

areas and the percentage of vacant housing that is boarded up) are associated to small coefficients in

absolute terms. Intuitively, these coefficients have been absorbed by the spike distribution of the EMVS.

Interestingly, two of the three variables selected only by EMVS are linked to the distribution of rents,

for which estimated coefficients are large (in absolute terms). As discussed before it is rather natural

to see these factors playing a significant part in the explanation of crime rates, even if causality is

not straightforward. To compare the shrinkage bias induced by penalties, we ran OLS on the selected

models. The bias induced by EMVS is lower than the one induced by the Lasso. A striking example is

the coefficient associated to the number of homeless persons in the streets, which is strongly biased in

the first step of the Lasso. This comes from the fact that the Lasso penalizes small and large coefficients

in a similar way while EMVS is more adaptive. As a matter of fact EMVS seems better suited regarding

the unbiasedness property advocated by Fan and Li (2001).

III.3 Main conclusions regarding the application

As it is common with many selectors, the choice of the regularization parameters matters a lot as

we have seen in the crime data application. In the EMVS, the regularization parameter is embodied in

equation (18). The choice of v0 and v1 appears to be crucial, just as in the choice of λ in the Lasso.

However, the strenght of the Bayesian framework here is that the probability that the true model is

equal to an estimated model can be computed by evaluating π(γ̂|y). This quantity gives a natural way

of selecting a model which is not possible in the frequentist version of the Lasso. To us, it is definitely a

strenght of the EMVS compared to its competitors

A potential extension of the model could be to build a not-so-informative prior on these two parameters

so as to make the choice of the regularization parameters easier. For example, the Bayesian hierarchical

specification in Giannone et al. (2012) put a prior distribution on few regularization parameters. These

prior distribution are based on previous results from the macroeconomic forecasting literature, but they
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are flat enough so as to let the “data speak” and find a good specification.

We have also noticed that contrary to other selectors, the EMVS does not shrink too much the

coefficients which is definitely a strength.

IV Conclusion

The EMVS is a nice variable selection tools that displays four main strengths. Firstly, the Bayesian

framework allows for flexible priors to incorporate the prior knowledge that we have regarding the struc-

ture of the coefficients (whether they are likely to be independently or jointly significant). Moreover, it

is computationally very fast which means that we can explore a lot of sub-models in a very short span

of time. This is clearly an advantage against traditional hierarchical Bayesian methods that require long

and slow MCMC computations. It comes at the cost that the full posterior distribution of the parameter

of interest β is no longer computed, but it is something that we can overlook if we are only interested

in variable selection. Then, from the application we have done on US crime data, we have seen that the

EMVS gives clear-cut answers in terms of variable selection, without biasing too much the estimate of the

parameter of interest β. Finally, it gives an answer in terms of model selection thanks to the Bayesian

framework which allows to compute π(γ̂|y), the posterior probability of a given selected model. This

is a clear advantage over frequentist methods such as the Lasso or the Ridge that suffer a lot from the

unanswered question of the penalty level choice.

A potential extension would be to extend the model to analyse time series. In this context, a prior

often used in auto-regressive models is that old lags of a series are a priori less relevant that recent lags

to predict the series itself (see for example Giannone et al. (2012)). In an application (the prediction

of Euro-area inflation) which is not reported here, we have found that the EMVS was not very effective

in selecting a convincing subset of lags/variables. Indeed, it ended up selecting a model where only one

variable was relevant and showed unstable results.
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