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1 Introduction

The use of panel data is extremely appealing in microeconometrics because they allow to

estimate the impact of a variable of interest while accounting for individual-specific unobserved

heterogeneity and disentangling components of variance without making assumptions that are

too restrictive (Arellano, 2003). For example, one of the most commonly used method is the lin-

ear fixed effect model that allows a part of the error term to be correlated with the time-varying

regressors. In this case, no assumption other than linearity is made regarding the individual-

specific heterogeneity which strengthens the robustness of the results compared to the random

effect model for example.

Panel data are also likely to be high-dimensional data in the sense that they may have

a large number of time-varying regressors. Typically, there may be multiple levels of observation

that may or may not be nested: the individual, the county, the state, the country, the firm, etc.

Examples of such studies include Abowd et al. (1999). But even with a small dataset, one can

be quickly faced with a high-dimensional problem, when several transformations of a variable

or interactions between variables are considered to allow for flexible effects to be captured, e.g.

in consumption models where the income is interacted with a social category dummy, or if sieve

approximations are used to estimate a non-parametric model. We will clarify later the contexts

within which the number of regressors may be larger, or at least proportional to the number of

observations.

Estimating high-dimensional models is not straightforward because for example

ordinary least squares give a perfect fit when there are as many explanatory variables as obser-

vations in the dataset. To deal with the variable selection problem in a rigorous framework and

overcome the shortcomings of usual methods like OLS, several methods have been developed.

Let us first clarify the problem in a simple case. Consider the following linear regression model

with the usual assumptions:

yi = xTi β + εi, ∀i = 1, .., n (1)

where yi is the observed dependent variable for individual i, xi is the (column) vector of p ob-

served random regressors, β is the p×1 deterministic vector of coefficients and εi is the residual.

For convenience, we also define the n× p matrix X :=
(
xT1 , ..., x

T
n

)
. We assume (yi, xi) to be iid

and E(εi|xi) = 0. The high-dimensional case arises when n < p, in which case the OLS estimator

cannot be computed. For the applied econometrician, this problem may arise even if we have

p ≤ n but p relatively large compared to n because the inverse of XTX may be ill-behaved. A

convenient way to deal with high-dimensional models is to assume approximate sparsity in β,

i.e. only s << n elements of β are non-zero and they are sufficient to grasp the main features

of the model. We call sparsity pattern the set of non-zero components of β: J (β) := {j : βj 6= 0}.

Fairly recently, a lot of attention has been devoted to estimators that penalize

non-zero elements of β in a way that makes computation relatively efficient, namely with a

convex function. The most famous of these estimators is the Lasso of Tibshirani (1996) that

uses the closest convex function - the `1-norm. The Lasso is defined as the result of the following
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minimization program:

min
β

n−1
n∑
i=1

(
yi − xTi β

)2
+ λ||β||`1 (2)

The Lasso minimizes the residual sum of squares, exactly as in the OLS, but there is also

a term that penalizes the “size” of β in order to shrink the coefficients. The tuning parameter

λ sets the trade-off between a reduced bias (the OLS estimator is obtained when λ = 0) and a

reduced variance (when λ is large). The Lasso has been shown to have good estimation prop-

erties with i.i.d. data, have been extended to the non-parametric and non-Gaussian cases and

the optimal choice for the penalty level λ has been studied in Bickel et al. (2009); Meinshausen

and Yu (2009); Lounici (2008); Belloni and Chernozhukov (2010); Zhao and Yu (2006); Zhang

and Huang (2008).

Here, we are interested in the application of high-dimensional methods to the par-

ticular case of panel data models. The main references for panel data models in the small-

dimensional setting are Wooldridge (2001); Arellano (2003); Magnac (2001). In these models,

the setting is the following: we observe n individuals (each indexed by i) at T distinct points in

time (each indexed by t), and we have the linear regression model:

yi,t = xTi,tβ + ci + εi,t (3)

with xi,t a potentially very large vector of explanatory variables. The random variable ci can

be interpreted as the unobserved idiosyncratic characteristics of individual i that also affect yi.

In a wage equation, one can think of ci as the ability, intelligence or social skills of the worker; in

the Solow-Swan test example, ci could be the quality of institutions as their usual measures are

imperfect and one can chose not to use them; in a price equation, ci could be non-measurable

or qualitative characteristics of the good, such as the quality of the neighborhood for a flat.

Note that there are n different values of ci which means that if we have to estimate them by

standard methods, we already consume n degrees of freedom. Assumptions about ci and εi,t

are key when considering the consistency of a given estimator of β. Let us focus on the case

where the strong exogeneity assumption holds: E (εi,t|xi,1, ..., xi,T , ci) = 0. The case where the

random effect assumption also holds, i.e. E (ci|xi,1, ..., xi,T ) = 0, isn’t the most interesting one

because the model boils down to the usual (potentially high-dimensional) pooled linear regres-

sion problem, albeit the error terms cannot be assumed to be heteroscedastic anymore. Here,

we are particularly interested in the case where the random effect assumption does not hold, i.e.

when the unobserved heterogeneity causes indeed a problem by violating the usual exogeneity

assumption. This is the case for which panel data are essential to obtain consistent estimators

of β, the parameter of interest.

Immediate application of the Lasso to panel data model is not immediate for at

least two reasons. The first one is that independence between observations cannot be assumed

any longer. Indeed, assuming that individuals behave independently from each other is not too

far-fetched as it is usually done in the simplest econometric models. But observations surely are

not independent over time within the same cross-sectional unit of observation, hence the need

to introduce the individual-specific heterogeneity effect c in the regression equation. Falling

to account for this correlation may lead to biased estimations. The second reason is that ap-
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proximate sparsity may not be the best assumption to deal with fixed effects. Indeed, it would

amount to assume that the individual-specific heterogeneity differs from a constant level only

for a small number of individuals while for all the others this unobserved heterogeneity may be

ignored. Consequently, Lasso-type methods have to be adapted to be of use in this framework.

Explicit contributions to the high-dimensional panel data literature have been scarce so far. We

can mention Kock (2013a,b) that assume approximate sparsity in the unobserved heterogeneity

and very recently, Belloni et al. (2014) which is a more convincing contribution.

In section 2, we motivate and illustrate the use of high-dimensional methods in the context

of panel data models and more widely inn microeconometrics. Section 3 review two main

contributions to the econometrics of high-dimensional panel models. Section 4 illustrates the use

of the Cluster-Lasso of Belloni et al. (2014) with a Monte-Carlo experiment and an application

to wage data as we take another look at the union wage premium estimated in Vella and Verbeek

(1998).
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2 Sparsity in fixed effect panel models: economic examples

In this section, we review microeconomic examples where high-dimensional techniques could

be useful. These examples are not necessarily taken from the panel data literature but we can

easily imagine to have panel data for the problems that we mention.

1. Non-parametric models: one may want to capture a richer behaviour between yi and

xi than the one assumed by the linear regression model. Say the true regression function

is unknown and we want to estimate it: yi = f (xi) + εi with E (εi|xi) = 0. We can

approximate f by fβ a linear combination of polynomial or spline transformations of xi

that will entail a large number of regressors if we chose a high order of the polynomial

transformation. In this case, there may not be sparsity in the true model, but approximate

sparsity could be assumed for convenience in order to compute an estimator f̂β of fβ

by using for example a Lasso estimator. Such considerations are useful in the case of

estimating returns to education where it is hard to believe in a linear relationship between

earnings and years of schooling. Instead, one could more realistically assume that earnings

change abruptly for those who are extremely well-educated (e.g. for MBA graduates) as

illustrated by Belloni and Chernozhukov (2009). Another example that deals with panel

data is the empirical application given in Belloni et al. (2014). They take another look at

the effect of gun control on homicide data from Cook and Ludwig (2004) by allowing for a

high-dimensional but sparse specification. They corroborate the original results and give

them more robustness.

2. “Agnostic approach” to model selection: considering a large number of potentially

significant regressors but assuming that only a few of them are actually significantly related

to the outcome (i.e. assuming sparsity) is a way to have an agnostic look at the data.

Indeed, it is often the role of economic theory to justify the use of a regressor, but the

researcher may want to try all the variables available instead of relying on prior beliefs

given by the economic theory (see for example Sala-i Martin (1997) in the context of

finding growth determinants). Considering a high-dimensional xi is a way to take a step

back and recover the sparsity pattern instead of simply assuming it. The consistency of

the Lasso in terms of recovering the true sparsity pattern has been studied in Zhao and

Yu (2006); Bickel et al. (2009); Lounici (2008). The problem of interest in Sala-i Martin

(1997) has a panel data structure since growth is observed for several countries over many

years.

3. Multiple sources of observed heterogeneity: a high-dimensional model can be useful

when one suspects multiple sources of heterogeneity but cannot pinpoint exactly which

variables are to be used as controls. The most prominent example of this case is the

test of the convergence hypothesis in the Solow-Swan model, i.e. poorer countries should

experience higher growth rates as they are catching up with the richer ones. But because

countries are different in many respects that can also interfere with the GDP growth rate,

one cannot expect the Solow-Swan hypothesis to be verified unconditionally. This example

is also illustrated in Belloni and Chernozhukov (2009). Belloni et al. (2013) consider a

partially linear model where there is only one coefficient of interest (in their example: the

effect of abortion on the crime rate) but potentially many confounding factors that have an

impact both on the outcome and on the variable of interest (we call it the “policy variable”
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for convenience). The interesting feature of the paper is that the confounding factors enter

in a non-parametric way in the two equations which are estimated by a linear combination

of many transformations of a set of variables. The key assumption is that only a small

subset of variables is needed to control for the confounding factors. Then, a Lasso-type

approach is used to perform model selection and Post-Lasso is used for estimation.

4. Multiple sources of unobserved heterogeneity: in the few cases where there is endo-

geneity and the econometrician has many instruments to select from, the Lasso can provide

a way to better perform variable selection and improve the preciseness of the estimation.

A classical example is the estimation of returns to schooling in the Angrist and Krueger

(1991) dataset which becomes a high-dimensional problems when many interactions and

transformations are considered (p = 1530 !). This example is also illustrated in Belloni

and Chernozhukov (2009).

3 Overcoming the curse of dimensionality via Lasso-type esti-

mators

We now review two solutions that have been proposed in the literature.

3.1 Kock (2013a)’s estimator

3.1.1 A statistical argument

Before diving into the underlying economic assumptions that lie behind using a `1-penalized

Least-Squares procedure, let us state an estimation result that would justify a bit more the idea

of penalized estimators in the context of panel models. This result can be found for example in

Koenker (2004). Firstly, we rewrite model 3 in its matrix form:

y = Xβ + Zc+ ε (4)

Where Z represents a matrix full of 1s and 0s so as to identify individual i’s effect in the

model. Now, assume ε to be conditionnally distributed as N (0nT , R) and c as N (0nT , Q), inde-

pendently from ε. We are in the random effect setting but it would not be very complicated to ex-

tend this to the fixed effect setting. The whole residual u, is distributed as N
(
0nT , R+ ZQZT

)
.

The GLS estimator of β is given by:

β̂GLS =
(
XT

(
R+ ZQZT

)−1
X
)−1

XT
(
R+ ZQZT

)−1
y (5)

Note that such an estimator is also the solution of the following program:

min
β,c
‖y −Xβ − Zc‖2R−1 + ‖c‖2Q−1 (6)

Proof of this result can be found in Koenker (2004). We can see that in this case, the optimal

estimator of β is the result of a penalized Least-Squares program that shrinks individual effects

c towards zero. We can notice that this penalty depends on the assumed distribution of c which

is a very particular case. Starting from this observation, we could as well define another penalty

reflecting a different prior belief about the distribution of c and achieve a better estimate of β

even though the dimension of β is not necessarily large1. This is the basic idea of Kock (2013a).

1For the link between prior distribution in the Bayesian framework and penalized regressions, see for example
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3.1.2 Kock (2013a)’s estimator

In the fixed effect and regular exogeneity setting for model 3, Kock (2013a) assumes that

c = (c1, ..., cn) is sparse and derives the properties of the so-called “Panel-Lasso” estimator for

which the slope β and the individual effects c are penalized separately:

min
β,c

n∑
i=1

T∑
t=1

(
yi,t − xTi,tβ − ci

)2
+ 2λN,T ||β||`1 + 2µN,T ||c||`1 (7)

Under assumptions regarding the regularity of the design matrix and a usual restricted

eigenvalue condition (i.e. the minimal eigenvalue of the Gram matrix associated with the design

matrix when the set of covariates is restricted to the non-zero coefficients is bounded away from

zero), the author states results regarding the consistency properties of the Panel-Lasso. We can

notice that this estimator is nothing more than a regular Lasso estimator with different penalty

loadings for the coefficients of interest β and the unobserved heterogeneity c.

The assumption about the sparsity of c appears to be slightly odd specified in this way. In-

deed, the economic thinking that underpins this assumption is that a large number of individuals

belong to the main category for which ci = 0 and only a few outliers, for which we cannot tell

why they are outliers, exist. This assumption does not necessarily seem unrealistic, but seems

at least not general enough. Firstly, if the unobserved heterogeneity is so anecdotal, an astute

transformation of the model where the unobserved heterogeneity vanishes could do the job as

well because we are seldom interested in estimating the unobserved heterogeneity if it is only

some noise. Secondly, a case where we have grouped unobserved heterogeneity is a setting which

would be more suitable for analysis and interpretability, and would also have the advantage of

encompassing the Kock (2013a) model. Such a setting has been investigated by Bonhomme and

Manresa (2012) in a small-dimensional case. Their “grouped fixed effects” estimator has the

appealing property that individual group membership is data-driven and allows for nice inter-

pretation of the division into groups.

In a nutshell, Kock (2013a)’s estimator is not an appealing solution because either we treat

individual-specific heterogeneity as noise and find a way to do away with it, or we have an

explanation regarding the source of this unobserved heteroegeneity in which case we want to be

able interpret it in economic terms.

3.2 Belloni et al. (2014) solution: the Cluster Lasso

3.2.1 Presentation and intuition

In a very recent contribution, Belloni et al. (2014) propose a more convicing solution. They

propose an estimator of β in model 3 that does not require the approximate sparsity assumption

in the individual-specific heterogeneity c and that accounts for the fact that the data may be

dependant within individual, heteroscedastic and non-Gaussian. They consider the “Within”

version of model 3 where the ci is eliminated by subtracting the mean of the variables:

ẏi,t = ẋTi,tβ + ε̇i,t (8)

Hastie et al. (2009, p. 61). The penalty we have just proposed corresponds indeed to a Normal prior distribution.

The `1 penalty corresponds to a Laplace prior distribution.
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with żi,t = zi,t − T−1
∑T

t=1 zi,t. Then the so-called Cluster-Lasso estimator of the model is

defined as:

β̂ ∈ arg min
b

1

nT

n∑
i=1

T∑
t=1

(ẏi,t − ẋi,tb)2 +
λ

nT

p∑
j=1

φ̂j |bj | (9)

This program differs from the usual Lasso program in the sense that there are p+ 1 penalty

terms: the main penalty level λ and covariate specific penalty loadings φ̂j . Let us dwell a bit

more on the use of the penalty terms φ̂j . These penalty terms are needed to make sure that a

so-called “regularization event” occurs with a high probability. This event is such that:

λφ̂j
nT
≥ 2C

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

ẋi,t,j ε̇i,t

∣∣∣∣∣ ∀j = 1, ..., p (10)

Where C is a constant. Intuitively, this event is such that the penalty terms are large enough

to dominate the noise associated with each regressor. If the noise, i.e. the correlation between

the regressor and the true residual, is large, the penalty term φ̂j will be large enough so that

β̂j = 0 as a result of program 9. We will not dive into how the probability of such an event is

computed as it requires to go through moderate deviation theorems and takes us too far from

econometrics. The ideal (infeasible) choice of penalty level is the following:

φj =

√√√√ 1

nT

n∑
i=1

(
T∑
t=1

ẋi,t,j ε̇i,t

)2

(11)

We can notice that it is a measure associated with the noise level of the j-th regressor.

Since this optimal choice of penalty level relies on the unobserved residuals, the Cluster-Lasso

is not feasible. However, the authors propose an iterative algorithm that makes the estimator

computable in the spirit of the two-stage least squares for instrumental variables.

It is also to be noted that Lasso-type methods are often used only to perform variable

selection. The nice feature of the `1 penalty is that some coefficients are set exactly to zero so

we don’t have to use a threshold to distinguish “real zeros” and “numerically small” coefficients.

Then, a second step, called Post-Lasso, is used where the subset of variables which yield non-zero

coefficients are kept into the design matrix and the model is re-estimated using ordinary least

squares. This second step is of interest because it allows to do away with the bias (or shrinkage)

associated with the `1 penalized regression.

3.2.2 Properties

Now, let us state and comment the three conditions under which we can tell that the Cluster-

Lasso has good properties. These conditions are usual in statistical models that assume approx-

imate sparsity. We will try to provide intuition for them instead of fulling stating them in a

formal way (they can be found in the original paper).

Condition 1. Approximately Sparse Model (ASM)

Originally, in their paper Belloni et al. (2014) consider a non-parametric model of the form

yi,t = f(wi,t) + ci + εi,t while we directly considered a linear model. This ASM condition states

that this non-parametric model can be approximated by a linear combination of dictionary trans-

formations of the original regressors wi,t. This this why it is of interest to consider the case
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where p >> n since we may want to consider a large dictionary to have a small approximation

error of the true regression function.

Condition 2. Sparse Eigenvalues (SE)

This condition is very common in the high-dimensional literature. It appears to be natural in a

sparisty context and allows to find faster rates of consistency for the Lasso when assumed. Let

us denote by s the cardinal of the sparsity pattern. This condition states that with a probability

approaching one as n tends to infinity, the empirical s-sparse Gram matrix has eigenvalues that

are between two strictly positive constants κ and κ′ that do not depend on n. We can notice that

this condition is related to the singularity of the full Gram matrix when p >> n. In other words,

in means that when the design matrix is restricted to the sparsity pattern, we no longer have a

problem when inverting XTX. For the usual Lasso, it amounts to assuming that the eigenvalues

of the s-sparse matrix are bounded away from zero.

Condition 3. Regularity Conditions (R)

These are five conditions on the design matrix, penalty levels, residuals and sparsity pattern.

Under these conditions, we are now ready to state the main theorem of the paper regarding

the feasible Custer-Lasso:

Theorem 1. Model Selection Properties of Cluster-Lasso and Post-Cluster-Lasso

Under conditions ASM, SE and R, for an overall penalty level given by λ = 2C
√
nTΦ−1(1−γ/2p)

and feasible penalty loadings such that `φj ≤ φ̂j ≤ uφj for some ` → 1 and u ≤ C < ∞. Then

the data dependent model Î selected by a feasible Cluster-Lasso estimator satisfies with probabil-

ity 1− o(1), ŝ = |Î| ≤ Ks for some constant K > 0 that does not depend on n. In addition, we

have the following relations for both the Cluster-Lasso and the Post-Cluster-Lasso:

1. 1
nT

∑n
i=1

∑T
t=1(ẋ

T
i,tβ̂ − ẋTi,tβ)2 = OP

(
s log(p∨nT )

nιT

)
2. ||β̂ − β||2 = OP

(√
s log(p∨nT )

nιT

)

3. ||β̂ − β||1 = OP
(√

s2 log(p∨nT )
nιT

)
It is to be noted that this result holds when either both n and T tend to +∞ or only n tends to

+∞ with T fixed.

Theorem 1 shows that the feasible Cluster-Lasso has good variable selection properties, good

predictions properties (relation 1) and good inference properties (relations 2 and 3). Relations 2

and 3 shows that the Cluster-Lasso and the Post-Cluster-Lasso have a high probability (on the

regularization event) to converge in probability as n tends to infinity. In Appendix A we tried

to provide a simple proof of the rate of convergence of the Cluster-Lasso. The proof of Belloni

et al. (2014) is written in a complex way so we tried to make it simpler using the same steps as

in the proof of Bickel et al. (2009) but did not manage to finish it.
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4 Application

In this section we run estimations on simulated and real panel datasets in order to test and

compare procedures in the high-dimensional case. All our estimations are first based on the

Lasso, and corrected in a second step using post-Lasso estimation.

4.1 Simulated data

We test the Cluster-Lasso estimator proposed in Belloni et al. (2014) using simulated panel

data. For this purpose we consider the model structure of 3 where we assume fixed effects

and strong exogeneity, i.e. E[εi,t|ci, xi,1, . . . , xi,T ] = 0. The simulations are generated using the

following DGP:

♦ High-Dimensional model: we set (n, T, p) = (60, 5, 400) such that n× T < p.

♦ Sparse structure of the true parameter: only a small number s of components are non null

(and normalized to 1) in the true parameter β. In the following simulations we set s = 10.

♦ We generate the data in a very simple way:

xji,t ∼ N (0, 4) ∀ (i, t, j)

♦ We generate the residuals using an AR(1) specification:

εi,t = ρεi,t−1 + ui,t, ui,t ∼ N (0, σ2) ∀ (i, t) (12)

where we set ρ = 0.8 and σ = 0.5.

♦ Correlation between fixed effects and covariates: the individual effects ci are generated

from one of the relevant covariates with the following (arbitrary) rule:

ci =
1

T

T∑
t=1

x1,t

As a result we get values for the theoretically observed variables (y,X) and we can test the

performance of the estimator previously presented. The full Data Generating Process can be

summed up by the following equation

yi,t = x
′
i,tβ + ci + εi,t (13)

Estimation is conducted with R using the package penalized. The penalized() function is flexible

and allows us to solve directly the problem of interest:

β̂ ∈ arg min
b

1

nT

n∑
i=1

T∑
t=1

(ẏi,t − ẋi,tb)2 +
λ

nT

p∑
j=1

φ̂j |bj |

Note that in practice the minimization algorithm minimizes the sum of squares instead of the

mean squares, so we can ignore the factor 1
nT in the penalty loadings. For our implementation

we keep the Cluster-Lasso parameter values presented in the original reference for γ and λ, i.e.

we set γ = 0.1/ log(min(p, nT )) and λ = c
√
nTφ−1(1 − γ/(2p)). However in order to get a

satisfying convergence we need to choose carefully and manually the value of the constant c. We
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run estimation using our function implementing the algorithm (see the code in Appendix B). In

a quite arbitrary maneer we set c = 0.55; with this value the algorithm converges and selects the

correct variables in a few iterations (K < 10). Estimation results and comparison with Kock’s

estimator, that we also implemented, are presented in figure 1.

One could suspect that these good results come from a too simple Data Generating Process.

In particular since our true parameter β only contains values in {0, 1}, the distinction between

zero and nonzero coefficients might be easy to detect. In order to asses the robustness of the

algorithm, we test the estimation procedure on real data in the following subsection.

Figure 1: Cluster - Lasso estimation on simulated dataset
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4.2 Empirical example: another look at the union wage premium from Vella

and Verbeek (1998)

We now turn to an application of the Cluster-Lasso to real data. We take a sample of wage

data from Vella and Verbeek (1998) where the outcome variable is the log of the hourly wage.

Data is taken from the National Longitudinal Survey (Youth Sample) and comprises a sample of

full-time working males who have completed their schooling by 1980 and then followed over the

period 1980 to 1987. There are 545 individuals because the authors have excluded those who

drop out so as to obtain a balanced design. Description of the covariates can be found in Table

1 of Vella and Verbeek (1998). The aim of this article is to evaluate the union-wage premium,

i.e. the incremental hourly wage that one gains from participating in a union. Unobserved

heterogeneity induces the union participation variable to be endogenous because unobserved in-

dividual factors that influence the choice of participating in a union may be correlated to those

which also determine the wage. Interestingly, Vella and Verbeek (1998) argue that unobserved

heterogeneity is not only individual-specific, but also time-individual specific meaning that this

unobserved heterogeneity changes over time. They find convincing evidence that introducing

control functions that vary over time helps getting a better estimate of the union wage premium,

as the coefficient associated with the union participation moves from .146 to .311 from the simple

model estimated with OLS to the one with correction terms.

We take another look at this dataset and do not employ their methodology. Instead of con-

sidering a first-step estimation where the choice of being in a union or not is considered, we allow

for a more general specification of the wage equation. Our assumption is that the bias in the

estimation of the union wage premium may not come from individual-time specific unobserved

heterogeneity but from a misspecification of the wage equation. For this purpose, we consider

a high-dimensional design matrix and use the Cluster-Lasso to select the control variables. We

do not penalize the coefficient associated to the union participation as it is the variable of interest.

There are only 33 covariates but we consider several transformations of them in order to

consider a high-dimensional problem. This is of interest because the effect of some covariates

may be non-linear and we want to be able to capture that effect. For each variable xji,t in the

original data set, we introduce the new variables (xji,tx
j
′

i,t), (xji,t)
2, and (log(xji,t)). We finally run

our Cluster-Lasso estimation with p = 305 covariates.

As in the case of simulated data we need to manually adjust the value of the constant c to

get nice selection properties. We will investigate several values for c and report the estimated

coefficient associated with the union participation. The result is in Table 1.

Table 1: Size of the Union wage premium

Penalty (prop. to) .32 .3 .275 .25 .2 .15 .1

Number of selected covariates 11 15 16 19 25 32 45

Union wage premium .127 .141 .146 .080 .082 .074 .077

Note: this table reports the size of the union wage premium computed by Post-Cluster-Lasso and the number

of variables selected by the Cluster-Lasso for different size of the penalty.

We also report the results of the Post-Cluster-Lasso for c = .3 in Table 2:

12



Table 2: Cluster-Lasso estimation of the wage equation, c = 0.3

Cluster-Lasso Coefficient

EXPER 0.054102

HOURS -0.000060

MAR 0.054139

UNION 0.140927

‘EXPER x NE LOG‘ 0.104708

‘EXPER x OCC2 LOG‘ 0.032371

‘EXPER x S LOG‘ 0.102399

‘EXPER x UNION LOG‘ -0.036772

‘HOURS x BLACK squared‘ -0.000000

‘HOURS x FIN‘ 0.000094

‘HOURS x FIN squared‘ -0.000000

‘HOURS x S squared‘ -0.000000

‘HOURS x TRAD squared‘ -0.000000

‘SCHOOL x OCC4 squared‘ -0.000396

As previously underlined the value of the constant c is critical in the estimation process.

The Cluster-Lasso leads us to selecting the variables ”experience”, ”married”, and ”union” as

relevant to explain the log-wage. The variable ”hours”, and several transformations of the initial

variables also seem to play an important role. Since Belloni et al. (2014) do not provide the

asymptotic distribution of the Cluster-Lasso estimator in the general case, we can’t run any

hypothesis testing. However some variables such as years of schooling or the dummies ”Black”

and ”Rural” are not selected while they are associated to significant, positive coefficients in the

OLS estimation given by Vella and Verbeek (1998).

We find a coefficient of .141 associated to the covariate ”union”, a result close to the one in

the reference article when they do not correct for the unobserved heterogeneity that also varies

with time (.146). However, no matter the size of the penalty that we implement, we are not

able to reproduce or even get close to a union wage premium of .3 that the authors found. This

suggest that substantial individual-time specific unobserved heterogeneity may remain and that

it biases the estimate of the union wage premium, as Vella and Verbeek (1998) suggested.
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5 Conclusion and further roads

Methods to deal with high-dimensional problems are of interest in micro-econometrics mostly

as a way to perform model selection, whether it is in a context of a non-parametric model es-

timated by sieve approximation, selection of control variables or instruments. We reviewed the

particular case of fixed effect panel data models. These models do not conform to a straight-

forward application of the regular Lasso since the assumption of approximate sparsity in the

individual-specific heterogeneity appears unrealistic and that temporal correlation must be taken

into account especially when a Within transformation of the model is considered. A convincing

estimator called Cluster-Lasso has been proposed by Belloni et al. (2014): it has desirable theo-

retical properties based on assumptions that are usual in the high-dimensional literature and is

also computationally efficient.

However, this estimator suffers from several drawbacks. The first one is that the rule for the

choice of the overall penalty level λ is vague. Some solutions have been proposed for example in

Bickel et al. (2009) but we can notice this this quantity is crucial as it determines the amount of

shrinkage chosen for the estimator. In empirical practice, several values for λ are often explored

or it may also be chosen by cross-validation. Another concern is the practical implementation

of the estimation procedure and the convergence of the algorithm. In particular Belloni et al.

(2014) don’t provide any precise rule concerning the choice of the number of steps K. In our

experimentation a relatively small number of iterations has been enough to select a stable num-

ber of covariates.

Related to the idea that we have exposed regarding the relationship between the choice

of the type of penalty and prior beliefs about the distribution of unknown coefficients, we can

mention the penalized regressions and variable selection have also been investigated in a Bayesian

framework, see for example Ročková and George (2014).
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A Proof of the Cluster-Lasso

In this section, we tried to provide a proof of the rate of convergence of the Cluster-Lasso.

The proof of Belloni et al. (2014) is written in a complex way so we tried to make it simpler

using the same steps as in the proof of Bickel et al. (2009) but did not manage to finish it. We

denote the objective function by L, defined in the following way:

L(β) := Q̂(β) +
λ

nT

p∑
k=1

φk|βk| (14)

with Q̂(β) := (nT )−1
∑n

i=1

∑T
t=1

(
yi,t − xTi,tβ

)2
. For a matter of simplicity, we dropped

the “dot” superscript but we are dealing with the Within transforms of the variables. We call

β∗ the true value of the parameter. We also introduce the sparsity pattern of β∗: J (β∗) :={
j : β∗j 6= 0

}
. Card(J) =≤ s. By definition of the Lasso program, since we have a convex

function, zero belongs to the sub-differential.

0 ∈ ∂L(β̂) (15)

It means that there exist a p-dimensional vector u such that:

2

nT
XT (y −Xβ̂) =

λ

nT
φu (16)

2

nT
φ−1XT (y −Xβ̂) =

λ

nT
u (17)

Where we obtain the second inequality by multiply by the inverse of φ := diag(φ1, ..., φp).

Multiplying by a given βT , and since ∀j, |uj | ≤ 1, we have:

2

nT
βTφ−1XT (y −Xβ̂) ≤ λ

nT
|β| (18)

The same inequality holds true for β̂:

2

nT
β̂Tφ−1XT (y −Xβ̂) ≤ λ

nT
|β̂| (19)

By taking one minus the other we obtain:

2

nT
(β − β̂)Tφ−1XT (y −Xβ̂) ≤ λ

nT
(|β| − |β̂|) (20)

Replacing by the true model y = Xβ + ε:

2

nT
(β − β̂)Tφ−1XTX(β∗ − β̂) ≤ 2

nT
(β − β̂)Tφ−1XT ε+

λ

nT
(|β| − |β̂|) (21)

On the regularization event given by (2.3) in Belloni et al. (2014) we have:

1

nT
|φ−1XT ε|∞ ≤

λ

2cnT
(22)

With c > 1. So we can notice that the first part of the right-hand side in equation 21

respects:
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2

nT
(β − β̂)Tφ−1XT ε ≤ 2

nT
|β − β̂|1|φ−1XT ε|∞ (23)

≤ |β − β̂|1
λ

cnT
(24)

And we have:

2

nT
(β − β̂)Tφ−

1
2XTXφ−

1
2 (β∗ − β̂) ≤ λ

cnT
(|β − β̂|+ c|β| − c|β̂|) (25)

By developing the left-hand side we obtain:

1

nT
||Xφ−

1
2 (β̂−β∗)||22 ≤

1

nT
||Xφ−

1
2 (β−β∗)||22 +

λ

cnT
(|β− β̂|+c|β|−c|β̂|)− 1

nT
||Xφ−

1
2 (β− β̂)||22

(26)

We denote ∆ = β̂ − β and we know that:

(|β − β̂|+ c|β| − c|β̂|) ≤ (1 + c)|∆J |+ (1− c)|∆JC |+ 2c|βJC | (27)

Now, we need to use the sparse eigenvalue (SE) condition to be able to consider several cases

and provide the rate of convergence. We also need regularity conditions (R) to say something

about the size of the norm of the penalty loadings φ. However, we are not able to continue the

proof further.
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B R code

1 ##################################

2 #### DATA GENERATING PROCESS #####

3 ##################################

4

5 dgp_panel_data ← function(n, t, p, j, intercept = FALSE ,

6 fixed_effects = TRUE , correlated_residuals =

FALSE)

7 {

8 set.seed (12071990)

9 ## Unobserved residuals - Strong exogeneity asumption

10 e ← rnorm(n = n*t, mean = 0, sd = 1) # uncorrelated component

11

12 if (correlated_residuals == TRUE){

13 rho ← 0.8

14 e ← NULL

15 for(i in 1:n){

16 e ← c(e, AR(t,rho=rho))

17 }

18 }

19

20 ## Explanatory variables

21 indiv ← kronecker(rep(1:n), rep(1,t))

22 X ← matrix(data = rnorm(n = (n*t)*p, mean=0, sd=2), ncol = p)

23

24 ## Fixed effects

25

26 c ← rep(0, n*t)

27 if (fixed_effects == TRUE){

28 Z ← data.frame(cbind(indiv , X))

29 # hyp: the fixed effect is the mean of x_1 for each i

30 #c ← tapply(Z$V3 , Z$indiv , mean) + tapply(Z$V2 , Z$indiv , mean)

31 c ← tapply(Z$V2 , Z$indiv , mean)

32 c ← matrix(kronecker(c, rep(1,t)), ncol = 1)

33 }

34

35 ## True parameter with sparse structure

36 beta ← c(rep(1, j), rep(0, p-j))

37 var_labs ← c("indiv", "y", paste("V", rep(1:p), sep = ""))

38

39 if (intercept == TRUE){

40 X ← cbind(rep(1, n*t), X)

41 beta ← c(1, beta)

42 var_labs ← c("indiv", "y", ’(Intercept)’, paste("V", rep(1:p), sep =

""))

43 }

44

45 y ← X%*%beta + c + e

46

47 sdata ← data.frame(cbind(indiv , y , X))
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48 colnames(sdata) = var_labs

49 print(head(sdata))

50 return(list(sdata = sdata , beta = beta , c = c, e = e))

51 }

52

53 AR ← function(T, rho =.8){

54 x ← vector(length=T)

55 x[1] ← rnorm(1,0,sd=2)

56 for(t in 2:T){

57 x[t] ← rho * x[t-1] + rnorm(1,0,sd =0.5)

58 }

59 return(x)

60 }

1 cluster_lasso ← function(data , lambda , K, post.lasso = TRUE){

2

3 # Data: dataset with panel data structure , form is output of dgp_panel

_data

4 # lambda: overall penalty level

5 # K: number of iterations

6

7 library(plm)

8 library(fBasics)

9 library(lars)

10 library(penalized)

11

12 ## Compute the Within tranforms

13 W ← within_matrix(data , index = ’indiv’)

14 y_dot ← W[,1]; X_dot ← W[,2:ncol(W)]

15

16 ## Initialize the penalty loadings

17 phi ← penalty_loadings(y_dot , X_dot , index=data$indiv)

18

19 ## Start the loop

20 for (i in 1:K){

21 lasso ← penalized(response = y_dot , penalized = X_dot ,

22 unpenalized = ∼0, lambda1 = lambda * diag(phi),

lambda2 =

23 0, model = "linear")

24 # Do not divide penalty by n*T, since sum of square is minimized and

not mean of squares

25 selected_vars ← colnames(X_dot)[coef(lasso , which = ’all’) != 0]

26 if (post.lasso == TRUE){

27 post_lasso ← lm(y_dot ∼ ., data = as.data.frame(X_dot[,selected_

vars]))

28 e ← as.matrix(residuals(post_lasso)) # Recompute the residuals

from a post -lasso

29 }

30 else{

31 e ← as.matrix(residuals(lasso))

32 }
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33 phi ← penalty_loadings(e, X_dot , index=data$indiv)

34 }

35

36 if (post.lasso == TRUE){

37 return(list(coef = coefficients(post_lasso), residuals = e,

38 names = names(coefficients(post_lasso)),

39 coef_lasso = coef(lasso , which=’all’)))

40 }

41 else{

42 return(list(coef = coef(lasso , which=’all’), residuals = e,

43 names = names(coef(lasso , which=’all’))))

44 }

45 }

46

47

48 within_matrix ← function(X, index = ’indiv ’){

49 J ← pdata.frame(as.data.frame(X), index = index , drop.index = TRUE)

50 W ← NULL

51 for (i in 1:ncol(J)){

52 W ← cbind(W, Within(J[,i]))

53 }

54 colnames(W) ← colnames(J)

55 return(W)

56 }

57

58 g ← function(v,e,index){

59 # Compute the penalty loading for a given regressor

60 # Formula given in the article

61

62 return(sqrt(sum(( tapply(v*e,index ,sum))∧2)/length(e)))

63 }

64

65 penalty_loadings ← function(e, X, index){

66 phi ← sapply(as.data.frame(X), g, e = e, index=index)

67 return(diag(phi))

68 }
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